
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4522 94

Improving the performance of Google file system

to support Big Data

Ms. Pooja Mittal
1
,

Munesh Kataria

2

Assistant Professor, Department of Computer Science & Application, M.D. University, Rohtak
1

 M.Tech Student, Department of Computer Science & Application, M.D. University, Rohtak
2

Abstract: After doing research on Google File System, we find out some methods to improve the performance of

Google file system. Google File System is a scalable distributed file system for large size distributed data-intensive

applications. It provides high fault tolerance while running on inexpensive commodity hardware and it delivers high

aggregate performance to a large number of clients. But there are some limitations in it such as it uses same chunk size

to append and write data. Fixed chunk size decreases its performance for append data. So we will explain some

methods to increase its performance by changing some attributes of typical Google File System. This paper is divided

into five parts. First part presents the basic introduction of Google File System, second part provides the performance

of GFS cluster for a 64 MB chunk size, third part shows the performance of real time GFS clusters, fourth part presents

a method to increase the performance of GFS, and finally part fifth concludes the effect of variable size chunk on GFS.

Keywords: Availability, chunk, performance, reliability, scalability.

I. INTRODUCTION

 Big Data is a distributed file system which is

developed by Google Inc. for their own use. It was

designed to provide reliable and efficient access to

data using large clusters of commodity hardware. It

was initially implemented to satisfy Google’s core

data storage and usage needs and mainly for search

engines. It was based on “Big Files”, developed by

Larry Page and Sergey Brin. In it, files were divided

in fixed size 64 megabyte chunks, same as sectors

and clusters in regular file system. Files are

extremely rarely overwritten; they are mainly

appended to or read. GFS mainly uses cheap,

“commodity” computers, so failure rate is generally

high but throughput is also high.

GFS mainly have two types of nodes: one master

node and large number of chunkserver nodes. Every

file is divided into fixed size chunks which are

stored on chunkservers and assigned a unique 64 bit

label by master at their creation time. Every chunk is

replicated several times according to their end-in

demand but it must be replicated at least 3 times.

Master node doesn’t store data chunks, it has

metadata about chunks such as their 64 –bit label,

their copies location and what processes are reading

and writing them. Master node also replicate a

chunk when number of copies become less than

three. All this data on Master node is periodically

updated by “a Heart-beat Message” from chunks.

Master node grant permission to any process for a

limited time interval to modify any chunk and then

modified chunkserver, which is always primary

chunk holder, do the changed to other chunkservers

having backup copies. Changes are saved when

acknowledgement came from every chunkserver

with backup copy. Any process first of all query the

master node for desired chunks location, if the

chunk are not in use then Master node provide the

location and program then request and receive the

data from the chunkserver directly.GFS is provided

as a userspace library , it is not implemented in

kernel of an operating system.

II. PERFORMANCE OF GFS
 A typical Google File System cluster may contain

hundreds of chunkservers and clients. But when we

measured performance on a GFS cluster consisting

of one master with two master replicas, 16

chunkservers, and 16 clients then the results were

following:

A. Reads

When N clients read simultaneously from given file

system then each client reads a randomly selected 4

MB region from a large 320 GB file set. It was

repeated 256 times so that each client ends up

reading 1 GB of data. When the chunkservers taken

together have only 32 GB of memory, so we

expected at most a 10% hit rate in the Linux buffer

cache. The results should be close to cold cache

results. Figure1 shows aggregate read rate for N

clients and its given theoretical limit. This limit

peaks at an aggregate of 125 MB/s when 1 Gbps

link between the two switches were saturated, or

12.5 MB/s per client when its 100 Mbps network

interface got saturated, whichever applied. The

observed read rate is 10 MB/s, or 80% of the per-

client limit, when just one client was reading. The

aggregate read rate reached 94 MB/s, nearly 75% of

the 125 MB/s link limit, for all 16 readers (6 MB/s

per client). The efficiency dropped from 80% to

75% because as the number of readers increases, the

probability that multiple readers simultaneously read

from the same chunkserver also increases.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4522 95

Fig 1 Read Performance

B. Writes

When M clients write simultaneously to M distinct files

then each client write 1 GB of data to a new file as a series

of 1 MB writes. The average write rate and its theoretical

limit are shown in Figure2. The overall limit plateaus at 67

MB/s because we need to write each byte to at least 3 of

16 chunk servers, each with 12.5 MB/s input connection.

The overall write rate for one client was 6.3 MB/s, about

half of the limit. The main culprit for this was network

stack. It did not interact very well with the pipelining

scheme which we use for pushing data to chunk replicas.

Total delays in propagating the data from one replica to

another replica reduced the overall write rate. Aggregate

write rate reached 35 MB/s for 16 clients, about half the

given theoretical limit. As in the case of reads, it becomes

more likely that multiple clients write concurrently to the

same chunkserver as the number of clients increases.

Moreover, collisions are more likely for 16 writers than for

16 readers because each write involves three different

replicas. Writes were slower than what we would like. In

real time this has not been a major problem because even

though it increases the latencies as seen by individual

clients, it did not significantly affect the aggregate write

bandwidth delivered by the system to a large number of

clients.

Fig 2 Write Performance

C. Record Appends

Figure shows the record append performance for GFS

when M clients append simultaneously to a single file.

Here we shows the record append performance for GFS

when M clients append simultaneously to a single file. The

performance was limited by the network bandwidth of the

chunkservers that store last chunk of the file to append,

independent of the number of the clients. It started at 6.0

MB/s for one client and dropped to 4.8 MB/s for 16

clients, mostly due to the congestion and variances in

network transfer rates seen by the different clients.

These applications tend to produce multiple files

concurrently. Or we can say, M clients append to N shared

files simultaneously where both N and M are in dozens or

may be in hundreds. Thus, the chunkserver network

congestion in experiment was not a significant issue in

practice because a client can make progress on writing one

file while the chunkservers for another file are busy.

Fig 3 Record Append Performance

III. PERFORMANCE FOR REAL TIME

CLUSTER

According to a research by Sanjay Ghemawat and his

team, the performances for two real time cluster are as

follows:
Cluster A B

Chunkservers 342 227

Available Disk Cap. 72 TB 180 TB

Used Disk Cap 55 TB 155 TB

Number of Files 735 k 737 k

Number of Dead Files 22 k 232 k

Number of Chunks 992 k 1550 k

Metadata at Chunkservers 13 GB 21 GB

Metadata at Master 48 MB 60 MB

Here we have two fair sized storage systems in which one

is utilizing nearly 80% of available space and another is

utilizing nearly 90% of available space.

Here we find that chunk metadata appears to scale linearly

with number of chunks. A has average file size about 1/3

of B. A has average file size nearly 75 MB and B has 210

MB which is much larger than average data center file

size. Here we get some performance data for the two

clusters:

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4522 96

Cluster A B

Read Rate – last minute 583 MB/s 380 MB/s

Read Rate – last hour 562 MB/s 384 MB/s

Read Rate – since restart 589 MB/s 49 MB/s

Write Rate – last minute 1 MB/s 101 MB/s

Write Rate – last hour 2 MB/s 117 MB/s

Write Rate – since restart 25 MB/s 13 MB/s

Master Ops – last minute 325 Op/s 533 Op/s

Master Ops – last hour 381 Op/s 518 Op/s

Master Ops – since restart 202 Op/s 347 Op/s

GFS has excellent sequential read performance, also very

good sequential write performance, but unimpressive small

write performance. When we see performance of cluster

A’s, in last minute it performs about 125 small writes,

averaging about 8k each. So not good for oracle call centre

with 500 desk. But it is not bad for a system constructed

from commodity hardware.

IV. METHOD TO IMPROVE PERFORMANCE

A. Variable chunk size
When a GFS cluster with one master, nine chunkservers,

and ten clients are given and the master server and

chunkserver machines are Dell 2850 configured with two

2.800GHz Intel Xeon processors, 2.0GB of memory, six

7200 rpm Ultra SCSI drives configured as one software

RAID-0 volume. All given client machines are same as

above except the memory is 4GB. And all of these

machines have 1 Gbps full-duplex Ethernet connection to a

Dell 2748 1 Gbps switch.

a) Master Operation
When ten clients concurrently execute the sequence with

42000 operations then the test shows that overall every

client consumed about 122 seconds to finish the all

operations. The workload of the master is 3443 operations

per second. In 2003 Google’s paper, they mentioned that

the rate of operations send to their master is nearly 200 to

500 operations per second. This master can easily keep up

with this rate. There is no bottleneck even for the workload

of 3000 Ops/s.

b) Read Buffer Size
When we are using different read buffer size then one

client reads a 1GB region from a file. Figure 4 shows

different buffer size and their read rate. The read rate

reached its maximum when the size was around 1024KB,

and after that becomes flat. So we choose 1024KB as the

default value of the read buffer size.

Fig 6 Read Buffer Size [7]

c) Reads and Record Appends
Because one switch is used to connect all our clients and

servers machines, so to get the theoretical network limits,

we run all clients as different threads on single client

machine. So limit of network throughput of all clients is

bound to 125MBps. When M clients read simultaneously

from file system then each client reads a randomly selected

4 MB region from the 18 GB file.

It is repeated 256 times so that each client ends up reading

the 1 GB of data. Figure shows the aggregate read rate for

M clients. The limit peaks at an aggregate of 125 MB/s

when client’s 1 Gbps network interface gets saturated and

Aggregate read rate reaches 90 MB/s, nearly 72% of 125

MB/s network limit. Sometimes most likely the efficiency

of single client drops as the number of readers increases,

because the probability that multiple readers

simultaneously read from the same chunkserver increases.

Figure shows the record append performance. M clients

can append simultaneously to a single file. The

performance is limited by aggregate bandwidth of links

between the chunkservers and the clients. It is 125 MBps

in given network topology. Aggregate append rate reaches

95 MB/s, nearly 75% of the 125 MB/s network limit. In

another test, we run multiple clients on different machines.

Fig 7 Aggregate Record Append Rate[7]

 The result’s shows that aggregate append rate can easily

more than 380MB/s, which is a demonstration of

expectation that out record append performance will not be

drop due to the network limit of one chunkserver like in

GFS. In contrast to this performance, the read and record

append operations in the Google file system can reach

75% and 50% of the given theoretical limit, separately. So

the record append performs much better. During the whole

test, the rate of CPU of that client machine always

maintained less than 5%, so there is no contest of CPU

which may lead to the deviation of the results.

V. CONCLUSION
Although this system have same assumptions and same

architectures with Google file system, but key design

choice that the chunk size is variable, which is different

from Google File System. Therefore, it lets this system to

adopt different system interactions for the records append

operation. The experiment results showed that this design

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4522 97

significantly improves the record append performance by

25%. We believe this design may apply to other similar

data processing infrastructure. We find out that using the

same system interaction for both record append and write

is a limitation of GFS and restricts the possibility of

digging for more better append performance, which led to

our different points in the design space. We assume chunk

size of file is variable and record append operation is based

on chunk level due to which the aggregate record append

performance is no longer limited by the network

bandwidth of the chunkservers that store the last chunk of

the file.

REFERENCES
[1] Alexandros Biliris, “An Efficient Database Storage Structure for

Large Dynamic Objects”, IIEEE Data Engineering Conference,
Phoenix, Arizona, pp. 301-308, February 1992.

[2] An Oracle White Paper, “Hadoop and NoSQL Technologies and
the Oracle Database”, February 2011.

[3] Cattell, “ Scalable sql and nosql data stores”, ACM SIGMOD
Record, 39(4), pp. 12–27,2010.

[4] Russom, “ Big Data Analytics”, TDWI Research, 2011.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,

“Google file system”, 2003.

[6] Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,Mike
Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber ,

Fay Chang, Jeffrey Dean , “Bigtable: A Distributed Storage
System for Structured Data”, OSDI 2006.

[7] Zhifeng YANG, Qichen TU, Kai FAN, Lei ZHU, Rishan
CHEN, BoPENG, “Performance Gain with Variable Chunk Size

in GFS-like File Systems”, Journal of Computational

Information Systems4:3 pp- 1077-1084, 2008.
[8] Sam Madden, “From Databases to Big Data”, IEEE Computer

Society, 2012.

